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ABSTRACTIN this paper, we present several extensions of epistemic logic withteipgarators
modelling public information change. Next to the well-known public annagueoéoperators,
we also study public substitution operators. We prove many of the resydtsineg expressivity
and completeness using so-called reduction axioms. We develop algerethod for using
reduction axioms and apply it to the logics at hand.
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1. Introduction

There are many scientific theories about information, fetance information the-
ory, probability theory, statistics, computer sciencdlqdophy of science, and logic.
The branch of logic called epistemic logic deals with infatian explicitly. It was
initially developed by Hintikka (1962), whose main goal veasonceptual analysis of
knowledge and belief. In epistemic logic the focus is onestants such as ‘I know
thatp’, ‘| know that you know thap’ and ‘I know that he knows that we know thgit
Epistemic logic is especially useful when applied to situa involving more than one
agent. One can model the information an agent has about teddws of the world
and the information an agent has about other agents’ inftimma.e., higher-order
information This ability to model higher-order information distingbies epistemic
logic from other scientific theories about information.

The focus on higher-order information has led to investigest into group notions
of information of which common knowledge is a prime exampepropositionp is
common knowledgeamong a group of agents iff everybody in the group knows that
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p, everybody knows that everybody knows thaand so orad infinitum This notion

is of crucial importance if one wants to understand commatioa, because common
knowledge is often exactly what communication aims to achieEpistemic logic
with temporal operators has been applied to the analysistefrlet communication
protocols and it has been used in formal specifications ofiragent systems (Fagin
et al, 1995; Meyeret al, 1995). There are also dynamic epistemic logics, where
change is not modelled by the passage of time, but with upaja¢eations. These
logics were developed specifically to analyt®ngeof higher-order information. It
has been a very active research field in the past years (R1888; Gerbrandet al,,
1997; Gerbrandy, 1998; Baltag al., 1999; van Ditmarsch, 2000; Baltag, 2002; Kooi,
2003; van Ditmarschkt al,, 2003; Baltaget al, 2004; Renardel de Lavalette, 2004; van
Benthem, 2006; van Bentheat al., 2006).

In epistemic logic, the information the agents have is meddby Kripke models.
In dynamic epistemic logic, information change is modelgdmanipulating these
Kripke models. The focus has mostly been on information ghastue to commu-
nication. One of the characteristics of communication & thdoes not change the
bare facts of the world, but only the information agents haleut the world and
each other. Hence, the issue of information change due tweiseof facts has mostly
been left out of consideration. Notable exceptions arengdpeRenardel de Lavalette
(2004), van Eijck (2004) and van Ditmarseh al. (2005b). In this paper, updates
where the bare facts of the world can change are studiedsitblhgpdates that model
communication.

The focus in this paper is not on full-fledged dynamic epistelogics with op-
erators for complex communicative updates. Instead thesftson the simple case
of public updates events where all agents get the same information and whese i
common knowledge (among all agents) that they get the saioreriation. Such pub-
lic updates can be of two forms: communicative or fact chaggihe technical term
for the former ispublic announcemerdnd for the latter | use the terpublic sub-
stitution Public announcements are public updates where all theesagemmonly
receive the information that a certain formula is true. la gemantics the effect of
a public announcement is modelled by adapting the model gwathall the worlds
where that formula is false are no longer considered pasdiblthe agents. This
was first introduced by Plaza (1989) and independently bypaaedy and Groeneveld
(1997). Public substitutions are public updates wheréalbigents commonly receive
the information that the truth value of a certain propositibvariable has changed
to the truth value of a (possibly) complex formula. In the aetits the effect of a
public substitution is modelled by adapting the model sttt after the substitution
the propositional variable is true in those worlds whereciiplex formula was true
before the substitution.

A logic with both these kinds of operators was introduced by Ditmarschet
al. (2005b), but the issues of axiomatisation and expressivése not addressed in
that paper. This led to the investigations reported in tlesgmt paper, concerning the
axiomatisation and expressivity of a whole range of logiith these operators. As it
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turns out, the logic introduced by van Ditmarsathal. (2005b) is more expressive than
the logic without public substitutions. Based on the obagon that its expressivity is
equal to the logic ofelativised common knowledgea logic studied by Kooi and van
Benthem (2004), and van Bentheaznal. (2005; 2006) — in the present paper a sound
and complete axiomatisation is obtained.

In Section 2, the languages and semantics of the logics tlidtexstudied are in-
troduced. In Section 3, | prove general theorems about egjwity and completeness
via so-called reduction axioms. In Section 4, these resubisapplied to the logics
introduced in Section 2. A case of special interest is studiparately in Section 5.
In Section 6, conclusions are drawn and directions for &rrthsearch are indicated.

2. Languages and semantics

We introduce a number of logical languages and their secstitat will be stud-
ied in this paper. Relativised common knowledge is alsmthiced, because it will
turn out to be quite important when we look at the expressfiepistemic logic with
public announcements, substitutions, and common knowleldgse the style of nota-
tion from propositional dynamic logic (PDL) for modal optes which was also used
by van Benthenet al. (2006).

DEFINITION 1 (LANGUAGES). — Let a finite set of agentd and a countably infinite
set of propositional variable® be given. The languag€’spscr is given by the
following Backus-Naur Form (wherg are formulas,a are modalities, andr are
public substitutions):

p = p| e | (pAe) | [a]e
a uw= al|y¢|o]| BT | (B)"
o = pi=¢ | pi=po

wherep € P, a € A, and B C A. Besides the usual abbreviatiofi3], will be used

as an abbreviation of\ ,. [a]¢. Only substitutiong such that any propositional
variable p occurs at most once on the left side of-&"are considered. In this way

o can be seen as a finite, and hence patrtial, function from Bitjomal variables to
formulas. By abuse of language, | usép) to refer to the formula assigned foif

p € dom(o), and to refer top otherwise. Various sublanguages will be considered,
whereq is restricted. The subscripts df below indicate whetheAgents Public
announcementsSubstitutions Common knowledgeor Relativised common knowl-
edgeare included. For instance?, s is the language with agents, substitutions and
relativised common knowledge.
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The non-standard expressions in the definition above adeaz#ollows:

[a)e Agenta knows thatp.

[Ble Everybody in groupB3 knows thatp.

[l 1 is the case after the announcement that

[o]p ¢ is the case after the substitution

p:=p,q:=1 pchanges te and simultaneously changes ta.
[BT]p ¢ is common knowledge among the members of

groupB.
[(B; @)t ¢ is common knowledge among the members of
group B relative toy.

The most difficult of these is relativised common knowled@ae can understand itin
the same way one can understand ordinary common knowlegds cbmmon knowl-
edge if everyone knows thatis common knowledge” is a way of explaining what it
means that something is common knowledge. The circulafithis explanation can
be understood as a fixed point construction. In the same wayaweharacterise rela-
tivised common knowledge:s'is common knowledge relative ioif everyone knows
that if ¢, thenp is common knowledge relative 6.

Logics with substitution operators have been studied kefd@ne of the epis-
temic actions considered by Baltag (2002) is a ‘flip’ actiamere the extension of
a propositional variable (the set of worlds in which the &hle is true) changes to its
complement. Renardel de Lavalette (2004) considers marergkechanges of truth
values where the extension of a propositional variable demge to the extension
of an arbitrary formula, but this logic does not contain a omn knowledge opera-
tor. Simultaneous substitutions were added to action nsdael/an Eijck (2004), and
actions models with substitutions were adopted in the lagicommunication and
change (LCC) by van Benthem et al. (2006). Here they areedua modal operators
in themselves. One might expect that simultaneity addsessjrity, yet it does not
make a difference in terms of expressivity (see Section dyvéver, simultaneity does
allow more succinct formulas.

Although the terms ‘knowledge’ and ‘common knowledge’ ased, | also con-
sider belief and common belief. In fact the semantics givelow is more suited for
the case of belief. The results below also apply to the gémeoalal case, where
these operators do not even have an epistemic or doxastipiigtation. In order to
keep things simple | only use the terms ‘knowledge’ and ‘canrknowledge’. The
language is interpreted in multi-agent Kripke models.

DEFINITION 2 (MULTI-AGENT KRIPKE MODELS). — Let a finite set of agents
A and a countably infinite set of propositional variablBsbe given. A multi-agent
Kripke model)M is a triple (W, R, V') such that

— W is a non-empty set of worlds,
— R: A— p(W x W) assigns an accessibility relation to each agent
- V:P — p(IW) assigns a set of worlds to each propositional variable.
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A multi-agent Kripke model/ with a distinguished worldy € W is called a pointed
model(M, w). Below we will also refer to pointed models as models.

The accessibility relation assigned to an agent in theseefadslinterpreted epis-
temically: (w,v) € R(a) indicates that ifw is the actual world, then ageatcannot
rule out that worldv is the actual world on the basis of its information.

Since the results below do not depend on whether the acdiggiblations be
reflexive, transitive, or euclidean, these extra requirgsiare not imposed. The lan-
guage is interpreted in pointed models, where the distsigd world is taken to be
the actual world.

DEFINITION 3 (SEMANTICS). — Let a multi-agent Kripke modélM, w) with M =
(W,R,V) begiven. Let € A, B C A, andy,? € ZLapscr.

(M,w) p iff weV(p)

(M, w) = (M) o

(Mw) Epns i (Mw) Epand(M,w) =

(M, w) [ [alp iff (M,v) = ¢ forall v such that(w,v) € R(a)
(M, w) = (o] it (M, w) |-

(M. w) F o] it (M7 w) =

(M,w) = [BT]p iff (M,v) | ¢ forall v suchthatw,v) € R(B)*
(M,w) = [(B;?p)T]y iff (M,v) &+ forall v such that

(w,v) € (R(B) N (W x [g] )"

The updated model/¥ = (W, R®, V) is defined by restricting the accessibility re-
lations to those worlds where holds. [¢],, denotes the setv € W|M,v = ¢}.
Now

R?(a) =det i(a) N (W x [¢] ) (= {(w,v) € R(a) | (M, v) = ¢}).

The updated modél/® = (W, R, V?) is defined by changing the valuation accord-
ingly.
V?(p) =det [o(p)] 5s

In the clauses fofB*]p and [(B; ?¢)*]y we useR(B) to denotel J,. 5 R(a) and
the superscript- denotes the transitive closure. (The transitive closura bfnary
relation R is the smallest transitive relation that contaiRs)

A formulay is a tautology iffe is true in all models:(M, w) = ¢ for all (M, w).
This is denoted as- ¢.

The semantics differs a little from the semantics given by étmarschet al.
(2005b), where only the S5 case was considered. In ordeesepre S5 under public
announcements it was required that the announced formtiagisotherwise the an-
nouncement cannot be executed, &tt{a) = R(a) N [[<p]]fw. Definition| 3 provides
the semantics for the general modal case where the publeteipaerely restricts ac-
cess to the worlds wherg s true, buty may be false in the actual world. In a belief
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setting, a public announcement represents the event winegents simplyakethe
information to be true, even though they may be wrong.

Many performative speech acts classified by Austin (196 8xascitivesare ex-
amples of public substitutions. For example:

1) You're disqualified.

2) | choose George.

3) You're fired.

4) | sentence you to death.

5) I pronounce you husband and wife.

When the sentences above are uttered in the right circunestaiheir utterance makes
them true. So, all these examples could be expressed ingioaldanguage a®':=

T’ (or as 'p := 1’). Such performative speech acts cannot be modelled ascpubl
announcements. Public announcements, considered ahsmeccould be classified
asexpositiveswhere the utterance of a sentence merely informs the éstehat the
sentence is true.

The following is another simple example of a public subsitiu Suppose there
are two agents andb in a room. Agent is blind, and can therefore not see whether
the light in the room is on. Ageritis not visually impaired, and can therefore see
whether the light is on. All this is common knowledge among #igents. Lep be
the proposition ‘the light is on’. Suppose that now the lighitch is flicked. Neither
agent is deaf and this is also common knowledge among bottisadgo, it is common
knowledge among the agents that the substitution= —p’ has occurred. Ageni
still does not know whether the light is in fact on or not, boed know that the truth
value ofp has changed. Agemtdoes know whethep. This public substitution is
illustrated by Figuré 1. This example shows that one mighttvia substitute using
complex formulas rather than justor L. It is also clear that if more than one fact
changes at once, then one wants to model this using simaliargibstitutions.

= -~ p: -p P

G| C—

<> - < -

Figure 1. Two Kripke models: the left one represents the situationreehe public
substitutionp := —p; the one on the right represents the situation after the joubl
substitutionp := —p. A world wherep is true is represented by a solid bullet. A world
wherep is false is represented by an open bullet

As a final example of how public substitutions can be usedsiden the Sum and
Product puzzle. Mr. Sum and Mr. Product do not know the lengthidth of a room.
They do know that these are natural numbers between 2 and®&ainthe length is
at least as large as the width € w < [ < 99.) The sum of these numbers is given
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to Mr. Sum, and their product is given to Mr. Product. All tisscommon knowledge
among Mr. Sum and Mr. Product. Now the following conversatikes place:

Mr. Product: | don’t know the numbers.

Mr. Sum: | knew you didn’t know. | don’t know either.
Mr. Product: Now | know the numbers.

Mr. Sum:  Now | know them too.

The length and width of the room can be deduced from the di@diy an out-
siderd The original formulation and solution of the problem wasegivy Freudenthal
(1969; 1970) in Dutch. The formulation above is by McCarth990). This problem
has been analysed usitg,pc by van Ditmarsclet al. (2005a). The utterance ‘I
knew you didn’t know’ poses a problem for this approach. Thstpense cannot be
represented itZ, pc. Van Ditmarsctet al. (2005a) solve this by noting that the first
announcement is superfluous given the second: the dialogghd just as well start
with Mr. Sum saying ‘I know that you don't know what the numlage.” However,
such solutions are not generally available in all scenariosre a past tense occurs.

In Zspsc there is a more natural way to represent past tenses (ahtipwguld
be quite unsatisfactory to a linguist). Suppose that aftemnhnouncement that one
learns that) was the case before the update. The formula

[p = Yllellp)x

wherep does not occur inp, ¢ or y, expresses this. It is as if the truth valueyof
has been put into an envelope before the update, and theopavislopened publicly
afterwards, thereby making it common knowledge what thetmith value ofy is.
Using this general approach one could show with the sengofiZ, psc that the
adaptation of the scenario proposed by van Ditmaes@i. (2005a) is indeed correct.
Another approach to announcements involving the past isns@xtend the language
with temporal operators. This is investigated by Yap (2006)

3. Reduction

In the completeness proofs of many of the logics introduneskiction Zeduction
axiomsplay an important role. A typical example of a reduction axiis

[pllalyy < [a](¢ — [¢l¥)

This is called a reduction axiom because going from the Iefhe equivalence to
the right the complexity of the formula to which the announeat operator is ap-
plied reduces These reduction axioms also play an important role in tesalbout

the expressivity of the logics under consideration. If teduction can be continued

"Y98MIY] puUR INOoJ 8J1e si|aquinu ay L
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depending on the logical form af until no announcement operators remain, one can
show that the language with announcement operators isgust@essive as the lan-
guage without them. The method of proving completeness qudl @xpressivity for
dynamic epistemic logic using reduction axioms has beed osy times in the lit-
erature (Plaza, 1989; Gerbrandy, 1998; Battagl., 1999; van Bentherat al,, 2006).
Here we provide a uniform setup, that provides such a geperapective on reduc-
tion axioms that it can be applied to many logics. In thisisecdt provide this general
method, which is applied to the logics under consideratioBection 4.

The general setup is given by two logical languagésand.% such that?; is
a sublanguage af,. The only difference is that%, contains additional operators.
In order to show that the languages are equally expressigeneads to be able to
translate each formula from %, to an equivalent formula in .%;. This translation
procedure is captured by the reduction axioms. These axioake, andq provably
equivalent. In this way one can obtain completeness#pwria completeness fof .
After giving a general definition of reduction axioms in Sent3.1, | prove a general
theorem about expressivity and reduction axioms in Se@i@nand prove a general
theorem about completeness and reduction axioms in SexBon

3.1. Depth and reduction axioms

Reduction axioms allow one to reduce the depth of the foredavhich the addi-
tional operators apply. In the proof of Theorem 10 (whichiestaufficient conditions
for two languages to be equally expressive) three notiodgpth are needed, namely:
(ordinary) depthO depth, andO reduction depth. The main induction is on tfe
depth, and in the induction step of this proof another inidimcon theO reduction
depth is embedded. The definition of a reduction axiom isrgiveterms of theO
reduction depth. Let us first define the notion of ordinarytdgpecisely.

DEFINITION 4 (DEPTH). — Letalogical language? be given. The depth: ¥ —
N is given inductively as follows:

d(p) =gef 0 if no logical operators occur ip
d(O(p1,---10n)) =dei 14+ max({d(g;) |1 <i<n})

where[J is somen-ary operator.

This is a very abstract way of looking at logical language. &ooncrete language
one has to specify what the logical operators are and whitahty is. The language
Zapscr contains formulas and other expressions. It is clear tbaipktance, con-
junction is a binary operator. We take] to be unary operator. An announcement
operator is a binary operator. For instance in the forniyje, the two arguments are
¢ andy. A substitution operatd] is an(n + 1)-ary operator, where is the cardi-
nality of dom(o): for instance a formula of the forip := ¢, r := ¢]x takesyp, ¥,
andy as arguments. Therefol[p := ¢, r := ¥]x) = 1 + max(d(p),d(¥),d(x)).
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A limit case would be a nullary operator. Since a nullary eper has no arguments
its depth is 1 (the maximum depth of formulas in the emptys6).i

For the operators one wants to eliminate from the languagpeaial notion of
depth is needed, which indicates to what extent the extreatgs are nested.

DEFINITION 5 (O DEPTH). — Let O be a set of operators it”. TheO depth
Od : & — Nis given inductively as follows:

Od(p) =qef 0if no logical operators occur ip
_ max({Od(g;) | 1<i<n}) OO
Od(D(p1,- - on)) - =der {1+quoawﬂ1<i<np if0 e o

Below we will takeO to be the set of logical operators that occur only4h, i.e.
the language to be reduced. The third notion of depth isd#tieO-reduction depth,
which indicates how complex the formulas are to which an routst O operator
applies.

DEFINITION 6 (O REDUCTION DEPTH. — LetO be a set of operators it’. The
O reduction deptlOrd : .2 — N is defined inductively as follows.

Ord(y) =qet 0 if no logical operators occur ip
_ max({Ord(p;) |1 <i<n}) fOZO
Ord@lprs-o ) =sar { TR to¢o

Note that in the second case of the second clause of this titefitihe ordinary
notion of depth is used. A general definition of reductionoaxé can be given in
terms ofO reduction depth.

DEFINITION 7 (REDUCTION AXIOMS). — Given are two languages’, and.%»
such that¥ is a sublanguage af;, because%, contains more logical operators,
assembled in a set of operatats A reduction axionis a formula of the fornp «
such thatOrd(y) > Ord(y).

Of course, such axioms are only useful if they are sound aadtbof system
actually allows one to perform substitutions. The rule orsts to use in this case
is the rule ofsubstitution of equivalentsin a proof system this rule allows one to
infer from ¢ < %, thaty < ¥/, wherey’ can be obtained fromy by substituting an
occurrence of by .

3.2. Equal expressivity via reduction
Let us clarify what it means for one logical language to be arexpressive than

another. Let us first distinguish thiehnessof a language from itexpressivity When
one language contains more logical operators than andligepne language is richer.
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In many cases a new operator is added to enrich a languagedeetteere is an im-
portant concept that is not yet captured in the languages d@bées not imply that
the expressivity is actually extended. When one languagenede more distinctions
in the class of models in which it is interpreted than angttien the one language
is more expressive than the other. In propositional loggjudction is an important
concept. However, when one adds it to the language thatgl@tains conjunction
and negation it does not add any expressivity. Let us defipeessivity formally.

DEFINITION 8 (EXPRESSIVITY). — Let two logical languages”, and.%, that are
interpreted in the same class of models be given.

— %) is at least as expressive &5, iff for every formulap, € % there is a
formulay;, € % such thatp; andys are true in the same models. This is denoted as
L = D

— % and.% are equally expressive if; = % and % = . This is denoted
as.i”l = .,?2.

— % is more expressive thatr; iff £, = % and % # %,. This is denoted as
31 - ZQ.

Note that this definition focuses on the expressivity of fales. One could just
as well focus on the expressivity of modalities and see whitdtions on the set of
worlds and on the class of models can be expressed. Here u&dadhe expressivity
of formulas.

The presence of reduction axioms for a set of operators stgyget the language
with the additional operators is just as expressive as tiglage without them. In this
section and the next we will give very general conditionsamathich the presence
of reduction axioms yields two equally expressive langgaayed general conditions
under which these axioms can provide a complete proof syfstetime richer language.
One of the conditions is that: gets its usual interpretation, and that hence the rule of
substitution of equivalents is valid. The following lemnsauised in the induction step
of the main theorem regarding expressivity (Theorem 10).

LEMMA 9. — Given are two language¥” and .%, such that% is an extension
of . with a set of logical operatoré). Moreover,.%; contains—. Given is also a
semantics for%, (and hence a semantics fg#}) in some class of models. Finally a
setA of reduction axioms fo© is given such that every formula which is not¥i
has at least one subformujasuch that there is a formula andy < 1 isin A. If the
reduction axiom#\ and the rule of substitution of equivalents are sound %6t then
forall ¢ € £ with Od(p) = 1, there is a formulay € £} such that= ¢ < .

PROOF — Suppose tha®d(¢) = 1. The remainder of the proof is by induction
on Ord(y). Supposeérd(yp) = 0. Thereforep contains no operators i@, and so
v € Z. Sincel= ¢ < ¢, we are done.

Suppose as induction hypothesis that for eyeguch thaOrd(p) < n, thereis a
formulay € % such that= ¢ « 9.
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Suppose thabrd(¢) = n + 1. Thereforep contains at least one formula of the
formO(x1, ..., xx) whered € O andOrd(O(x1, - - -, xx) = n+1. According to our

assumptiorid(xa, . . ., xx) has at least one subformula such that there is a reduction
axiom for it. But, since the& depth of(x1,...,x%) equals 1 by assumption, the
only formula for which that can be true iS(x1, ..., xx) itself. So there must be a

formula¢ such thatd(x,...,xx) < & € AandOrd(0(x1, ..., xx)) > Ord(€).
Now, the induction hypothesis applies§@nd therefore there is a formufa € £
that is equivalent t&(x1, . . ., xx). There is such a formula for each subformula.of
which has the fornd(xa, . . ., xx) whereOrd(O(xa, - . ., xx) < n+1. By repeatedly
applying the rule of substitution of equivalents one carawbt formulay € .%.
Since the reduction axioms are sound and the rule of sutistitof equivalents is
sound it follows that= ¢ < 1. |

This lemma will be used in the induction step of the followthgorem.

THEOREM 10. — Given are two language%’; and.%, such that%, is an extension
of % with a set of logical operator§®). Moreover,.%, contains<. Given is one
semantics for%, in some class of models. Given is a Aaif reduction axioms fo©)
such that every formula which is not iff; has at least one subformula such that
there is a formulayy) and ¢ < ¥ isin A. If ¢ < ¢, the reduction axiom# and
the rule of substitution of equivalents are sound.dr, then.#, and_.% have equal
expressivity.

PROOF — ltis given that¥, is a sublanguage o¥%,. So itis clear that¥, = %.
In order to show that?} = % we have to prove that for every formulac %, there
is a formulay € % such that= ¢ < . We show this by induction on th@ depth.
If the O depth is0, theny € Z. Itis clear that= ¢ < ¢.

Suppose as induction hypothesis that for everg % with Od(y) < n, then
there is ap € % such that= ¢ < 9.

Suppose thaOd(¢) = n + 1. Thereforep contains at least one subformula

of the formO(x1,...,xx) whered € O. For all x; it holds thatOd(y;) < n.
Therefore, by the induction hypothesis for eaghthere is a&;, € % such that

E x: < &. By repeatedly applying the rule of substitution of equévas one can
show that= O(x1,...,x%) < O(&,...,&). TheO depth of (&4, ...,&) is 1.
Now by Lemma 9 there is a formulae £, such that= (0(&;, ..., &) < £. Since

an arbitrary subformula gp was taken, one can repeatedly apply the rule of substitu-
tion of equivalents and find a formulaih € %, such that= ¢ < . [ |

3.3. Completeness via reduction

In the previous section it was shown how reduction axiomshmunsed to show
that two languages are equally expressive: for every faarimihe one language there
exists an equivalent formula in the other language. Thefpri@oreduction axioms
was quite constructive. Given a set of reduction axioms arefmd an equivalent
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formula in the poorer language in a systematic way by repgaseibstituting subfor-
mulas according to reduction axioms, all the time decrepgir O reduction depth.
Therefore if the reduction axioms and the rule of substtutif equivalents are added
to a complete proof system for the poorer language, onersbtatomplete proof sys-
tem for the richer language, because the reduction can n@ptace within the proof
system. In this way provablyequivalent formula is found. The proof of completeness
is quite similar to the case of expressivity.

THEOREM11. — Given are two language®’; and.%, such that%, is an extension

of £} with a set of logical operator§). Moreover,.%, contains<. Given is one
semantics for%, in some class of models. Given is a Hilbert style proof sy$tém
which is sound and complete f&#, with respect to the given semantics and class of
models. Given is a sét of reduction axioms fo© such that every formula which is
not in %, has at least one subformula such that there is a formula and ¢ <

is in A. If the proof syster®S + A together withy < ¢ and the rule of substitution
of equivalents (which we also refer to & + A) is sound for.%,, then it is also
complete for%s.

PrRoOOF — Analogous to the proof of Theorem 10, we can show that byefary
formulay € %, thereis a formula) € .Z; such that-ps,a ¢ < 1. The proof is by
induction onOd(y), where the induction step is an induction ©nd(y). We do not
provide details.

To prove completeness, suppose trap for a formula in%. Thereis a) € &4
such that-ps1a ¢ < . By the soundness d?S + A it follows that = . By
completeness fafZ; of PS it follows thattps 7. Since a proof irPS is also a proof
in PS + A, it follows thatkps. A 1 as well. By the rule of substitution of equivalents
it follows thattps_a ¢. [ |

4. Reducing public updates

In this section | will apply the results obtained in the pmi§ section to some of
the logics that were defined in Section 2. In order to applyréisalts we need:

1) semantics for the relevant sublanguage€af-scr,

2) sound and complete Hilbert style proof systems for theveeit sublanguages
of Zapscrs

3) soundness of the rule of substitution of equivalents, and

4) a set of reduction axioms.

The semantics for the entire languagé pscr has been provided in Sectipn 2, and
thereby also for all its sublanguages. Fortunately, tieeditire provides Hilbert style
proof systems for the logics without public updates. Segi(reat al,, 1995; Meyeret
al., 1995) for systems faZ4 and.Z4¢, and see (Kooét al., 2004) for a proof system
for Z4r. So all that remains to be shown is that the rule of substitutif equivalents
is sound. Moreover, we need to provide a set of reductionnasj@specially for the
public announcement operatgs] and the substitution operatfr].
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Let us briefly discuss the earlier completeness and expitgseesults regarding
these logics. Plaza (1989) introduc&t, p and provided a sound and complete proof
system for it. Indeed Plaza used reduction axioms and shtvee’y and.Z,p are
equally expressive, thus obtaining an easy completenesd pia completeness for
Z4. The fact thatZ,¢ is more expressive tha&’, is folklore. A complete proof
system for.Z 4 was obtained by adapting the results on propositional dyobogic,
of which the most readable completeness proof is considerkd Kozen and Parikh
(1981). Baltaget al. (1999) showed, contrary to what was expected given Plaza’s
result, thatZ4 pc is more expressive tha®’s. This makes a completeness proof
for Z4pc much harder, and one cannot make do with just reduction axioret a
proof system fotZ4 pc is provided by Baltaget al. (1999). Kooi and van Benthem
(2004) provided a complete proof system &1, , also based on the paper by Kozen
and Parikh (1981), and it was shown th#  and.Z 4 pr are equally expressive by
reduction axioms. It was established tH&f  is more expressive tha#’s p by van
Benthemet al. (2005). These results are shown in Figure 2 together witméve
results obtained in this section.

All the new results regarding expressivity and completer@sthese logics ex-
cept completeness faspsc (see Section]5) will be dealt with using the following
reduction axioms.

DEFINITION 12 (REDUCTION AXIOMS). —

1) [¢lp < p
2) ]~ < =[]y
3) [e](¥ A x) < ([l Alelx)
4) [¢llaly < lal(e — [@]¥)
5) [¢][(B; ) *]x < [(B; 2(¢ A [e]¥) Fllelx
6) [o]p < o(p)
7) [o]~p < —o]p
8) [ol(p A1) < ([olp Aloly)
9) [o][a]e < la][o]e
10) [0][B*]p < [BY][ole
11) [0][(B; ?9) ¥ « [(B; ?[o]p) o]y
12) [Bt]p < [(B;?T) g
13) [(B;?7¢) ] < [p:= ¥][0][BF]p wherep does not occur inp.

Although these axioms are called reduction axioms, theyareeduction axioms
in themselves, but, following Definition 7, only relative $ome set of logical oper-
ators. Indeed, in some cases (such as in the proof syster#fet-) they cannot
be construed as reduction axioms. Below it will be clear thahe proper context
they are reduction axioms for their leftmost logical operaDne can immediately see
that, in that case, th€@ reduction depth is strictly less on the right hand side of the
equivalence. Axioms 1, 6, 12 and 13 are unlike the other rtmluexiom in that they
directly reduce th&® depth (thereby reducing th@ reduction depth). Axioms 1 and
6 might well be dubbed elimination axioms, since there isless modal operator on
the right hand side. Remember that in axiom 6 we abuse theidaegsuch that(p)
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refers to the formula assigned paf p € dom(s), and to refer tg otherwise. One
might say axioms 12 and 13 are translation axioms, becaus@tops are replaced.
Thatp does not occur irp is called afreshness conditiorThis kind of condition also
occurs in the axioms for quantifiers in first order logic. lderto apply the theorems
of the previous section, it needs to be established tha¢ tiaeems are sound.

LEMMA 13. — All reduction axioms are sound.

PrROOF — For the soundness of reduction axioms 1-4 | refer to Plag89). For
the soundness of reduction axiom 5 | refer to Kooi and van lBamt(2004). In all the
proofs below we use the semantics provided in Definition 3.

[
the case iff M, w) |=

7) (M, w) [ [o]- iff (

This is the case iff M, w) £ [o]p, which is equivalent td M, w) = —[o]e.

8) (M,w) E [o](e Av) iff (M, w) = (¢ A ). The latter is the case iff
(M?,w) E ¢ and (M?,w) E v, which is equivalent td M,w) & [o]e and
(M, w) = [o]y. This is equivalent td M, w) = [o]p A [o]t.

9) (M,w) [ [o]lale iff (M?,w) [= [a]e. The latter is the case iffM 7, v) = ¢
for all v such thatw, v) € R(a), which is equivalent tgM, v) |= [o]¢ for all v such
that(w, v) € R(a). This is equivalent t¢ M, w) = [a][o]ep.

10) (M,w) E |[o][BT]e iff (M?,w) E [BYt]e. The latter is the case iff
(M?,v) = ¢ for all v such thatw,v) € R(B)*, which is equivalent tg M, v) =
[o]¢ for all v such thatw, v) € R(B)*. This is equivalent t§ M, w) = [BT][o]e.

11) (M, w) [ [o][(B; ?9) |y iff (M7,w) = [(B;?¢)T]. The latter is the case
iff (M7,v) = v for all v such that(w,v) € (R(B) N (W x [¢],.)", which is
equivalent ta(M, v) = [o]¢ for all v such thatw, v) € (R(B) N (W x [[o]e] )T
This is equivalent td M, w) = [(B;?[c]e) t][o]e.

12) Notethat?(B) C (W xW)and thaf T] = W. ThereforeR(B)"™ = (R(B)N
(W x [T+ (M,w) = [BT]piff (M,v) | ¢ for all v such tha{w, v) € R(B)™".
Given the observation above, the latter is equivalerifov) = v for all v such that
(w,v) € (R(B) N (W x [T]))". This is equivalent t§ M, w) = [(B;?T) " |e.

13) Sincep does not occur inp, the substitutionp := v does not affect the
extension ofp. Therefore[y¢],, = [¢lym—v. SO (M,w) E [(B;?¢) "]y iff
(M,v) [= ¢ for all v such that(w,v) € (R(B) N (W x [¢]m—-+))". Note that
the relation(R(B) N (W x [¢]»—))" is identical toR?(B)*. Note also that
= ¢« [p = ]p. Therefore(M,w) = [(B;?) ]y iff (M,v) |= [p = ¢]p for
all v such that(w,v) € R#(B)*, which is equivalent tqM?=% v) = p for all v
such thatw,v) € R?(B)™T. This is equivalent t¢ M?=% w) |= [¢][BT]p, which is
equivalent toq M, w) = [p := ][] [BT]p. [ ]

6) (M,w) [ [o]p iff (M?,w) = p. The latter is the case ift € V7 (p). Thisis
o(p)-
p iff

M7, w) |= —p. The latter is the case iffM 7, w) £~ .

Note that the rule of substitution of equivalents is soundalbthe logics under
consideration.

LEMMA 14. — The rule of substitution of equivalents is sound.
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The proof of this lemma is left to the reader. It is not thafidifit to show that this
rule is derivable irK (see Hughes and Cresswell (1996, p.32)). The lemma follgws b
the soundness of the proof systems. Itis also possible to gtad this rule is derivable
in all the systems we are going to consider (if we have netzigsi and distribution
for ), but since this would distract from the main line of the papee just add it to
the proof systems.

4.1. Expressivity of public updates

Now that the soundness of the reduction axioms and the rulodtitution of
equivalents is established, it is easy to obtain exprags®sults for a great number of
logics using the reduction axioms. See Figure 2 for a gragcesentation of these
results together with previously established results.

In this paper only the equal expressivity of languages isally shown. The fact
that some languages are more expressive than others fdlomsthese new results
combined with previously obtained results.

THEOREM15. —

1) ZLa=ZLap = Las = Laprs

2) Lac = ZLasc

3) Lar = Lapr = ZLasr = Larsr = Lacr = Lascr = LAPCR =
Lapscr = Lapsc

PrRoor — Inall three cases above Theorlem 10 applies. We have oransiesfor

Zapscr, and all languages under consideration are sublanguagesveé already
showed that all reduction axioms are sound as well as thefoulsubstitutions of
equivalents (Lemma 13 ahd 14). All that remains to be showmeisfor each formula
in the richer language which is not in the poorer languageetiea subformula for
which there is a reduction axiom.

1) To see thatZy = Zap, let the set of reduction axion®s be reduction ax-
ioms 1-4 of Definition 12. It is easy to see that each formul&ine that is not in
Z4 contains a subformula for which there is a reduction axiomifaermost nested
occurrence of an announcement operator precedes a forrhigh 8 either a propo-
sitional variable, a negation, a conjunction, or a knowteftgmula. For each of these
cases there is a reduction axiom. Therefore, by Theprén¥’i0= %4 p.

To see that?, = Zag, let the set of reduction axioms be reduction axioms 6—

9 of Definition[12. Again, it is easy to see that each formuladiys that is not

in Z4 contains a subformula for which there is a reduction axionher&fore, by
Theorem 10,24 = Las.

To see thatZsy = Zaps, We simply take the union of the sets of reduction axioms
above. Now one simply takes one of the innermost nested ewmes of a substitution
or a public announcement operator to see that every formul#ip s which is not

in Z4 contains a subformula for which there is a reduction axionher&fore, by
Theorem 10,24 = Laps.
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ASCR APSCR
N /
ASR APSR

Figure 2. An arrow S — T indicates thatZr is more expressive that’s. A double
arrow S < T indicates thatZs is equally expressive a¥;. The dashed arrows
indicate previously established results. The black arrowlécate new results. For the
sake of readability all reflexive arrows are omitted and nbtt@ansitive arrows are
shown. The differently shaded areas indicate the equicaletasses. The lighter gray
the area is, the more expressive the languages in it are

2) Here we take reduction axioms 6-10 of Definition 12. FronedrenT 10 it
follows that.Z,c = Zasc by similar reasoning as above.

3) To see that?ar = Lapr = ZLasr = ZLapsg IS completely analogous to
the case?y = Lap = Las = Laps, except now axioms 5 and 11 of Definition 12
are used as well.

Using axiom 12 of Definition 12 it can be shown thety rp = ZLacr, thatLapr =
ZLapcr, thatLysr = Lascr, and thatZapsrp = ZLapscr-

To see thatZ4 psc also belongs to this set of languages, observe that it cahdves
that Zapsc = ZLapscr With axiom 13 of Definition 12. [ |
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The most surprising of these results is ti8t r = -Z1psc. The motivations for
these two logics are quite different. Now it turns out thaythave the same expressive
power.

From Theorem 15 together with earlier results, it followatt¥’s psc < Lapc,
sinceZar < Lapc andLyr = ZLapsc. As can be seen in Figuré 2 this is the only
case where adding public substitutions to a language extim@xpressive power.
This is also quite surprising.

As an aside, observe that the substitution in translatidonaxX 3 is just one sub-
stitution, i.e. we do not need to change more propositioagbiles simultaneously.
This raises the question whether one can just make do withesgubstitutions. This
is indeed the case. Consider the schéme= ¢, o]y < [q := ¢|[o][p := q]¥ where
q does not occur ifo]y. This formula is a tautology, and allows one to show that
simple substitutions are equally expressive as simultameobstitutions.

4.2. Completeness for public updates

There are two problems for a direct approach to proving cetepkss for update
logics: modal logics with update operators are notmal modal Iogic@ and modal
logics with a transitive closure operator (such as (reisdi) common knowledge) are
notcompacti.e. it is not the case that an infinite set of formulas isséatble, if every
finite subset of that infinite set.

Modal logics with update operators are not normal becauseute of uniform
substitution is no longer sound. This rule allows one to 8tilis a propositional vari-
able for an arbitrary formula uniformly. The idea behindfanin substitution is that if
a formula is a tautology, then it is true in every model no eratthat the extension of
the propositional variables in the formula is. Therefore gan uniformly substitute
a propositional variable for a complex formula, which alss la certain extension. In
public update logics propositional variables play a sgeola. Their truth value is not
effected by public announcements, although the truth valw®mplex formulas can
be effected by them. Examples of such formulas are so-caltlsdccessful updates
formulas that become false by their announcement (Gerkraf88; van Ditmarscht
al., n.d.), a concept closely related to Moore’s paradox. Gtarghe tautologyp][a]p.

If we replacep with (p A —[a]p) the result is the formulp A —[a]p)][a](p A —[a]p).
This is not a tautology. Hence the uniform substitution isaund in this case. In the
case of public substitution propositional variables al&y @ special role. Only the
extension of propositional variables can be changed dijrewit of complex formulas.
Moreover, given that the extension of a propositional \éacan be set to the ex-
tension of a complex formula by a public substitution, theeagion of propositional
variables cannot be seen as being arbitrary within the sobpepublic assignment.

2. See of Hughes and Cresswell (1996, p.25) or Blackbual. (2001, p.33) for the definition
of normal modal logics.
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Consider the tautologyp := Tlg < ¢, wherep and g are different propositional
variables. If we replace with p, we get[p := T|p < p, which is not a tautology.
So, the rule of uniform substitution is also unsound in tliisec General methods for
proving completeness for a modal logic are geared towardwsalanodal logics (for
example Blackburret al. (2001)). Therefore one cannot apply these methods directly
to dynamic epistemic logics.

The other difficulty in providing completeness results filyrfamic) epistemic log-
ics, is that when (relativised) common knowledge is in theglaage, the logic is no
longer compact. Therefore one cannot easily construct andead model where the
worlds are maximal consistent sets of formulas, becausaibccur that an infinite set
of formulas is consistent, but not satisfiable. This probéso occurs in propositional
dynamic logic, where it is solved by making a finite canonitaldel, depending on
the particular formula one is interested in (Kozgral, 1981). In this way only weak
completeness is attaied One can adopt a similar method for dynamic epistemic
logics with common knowledge, as was done by Baétgl. (1999).

Compared to a direct approach to completeness for dynansteapc logics, an
approach with reduction axioms is much more straightfodwaknd given the gen-
erality of the approach we can easily deal with many logiozuianeously. We will
reduce the logics under consideration to three base laeguafyy, ZLac and Zsg.
As we remarked earlier, for these there are known compldteeHistyle proof sys-
tems. Tablé 1 shows which reduction axioms for the additioparators should be
added to which base system. The numbers refer to the redustioms in Defini-
tion|12. The extensions that are not considered are lefkfilan

Table 1. The table indicates which reduction axioms are to be addéledase proof
systems

P |S C
Zi | 14|69
Zac 6-10
Zan | 1-5| 6-9,11] 12

THEOREM16. —

3. Strong completeness of a proof systefhwith respect to a class of framésis the property
thatT' =r ¢ implies thatl’ Fps ¢ for every set of formulag® and every formulap. This
generalises weak completeness, wHeig empty.

4. The cellin the upper right of the table is left blank, because addingmmknowledge t&Z4
yields Zac, which is dealt with in the second row. The cell below is left blank becadding
common knowledge to a language that already contains common knewieds not make a
difference. The cell in the middle left column of the table is left blank bseaadding public
announcements to the language with common knowledge, yields a moessixpe language,
which can therefore not be dealt with using reduction axioms.
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1) The proof system fo#4 together with the appropriate reduction axioms from
Table 1 and the rule of substitution of equivalents is cotedier 4 p, for £45 and
for gAPS-

2) The proof system fa#4 ¢ together with reduction axioms 6—10 and the rule of
substitution of equivalents is complete &ty 5.

3) The proof system fa¥4 r together with the appropriate reduction axioms from
Table[1 and the rule of substitution of equivalents is cotepfer ZLipr, Lasr,
LAPSRy LACR, LAPCR, LASCR, AN ZLAPSCR-

PROOF — In order to prove all these results Theorem 11 is appliedce alveady
showed that all the reduction axioms and the rule of sultstitof equivalents are
sound. From the literature, complete proof systems#ar, Z1c andZ4 g were ob-
tained. In the same way as was shown in the proof of Theoremvél6an show that in
each case a formula in the richer language contains a subf@tmwhich a reduction
axioms applies. Therefore by Theorem 11 all the proof sysigm complete. H

5. A complete proof system for Zapsc

The only new result that cannot be obtained using the resluctkioms given
in the previous section is a complete proof system #{psc. In the proof that
Lrr = Zapsc | showed thatZapsc = ZLapscr WhereZipscr Was reduced
to Zapsc. SinceZapscr also reduces to#y it followed that.Zir = Laprsc.

S0 Zspsc washot reducedo .Z4r. Such a reduction is in fact impossible, since
neither language is a sublanguage of the other. This exadegalis to a more general
guestion how one might obtain a complete proof system forlanguage by using a
known proof system for an equally expressive logic, buthegiis a sublanguage of
the other. In Section 6 we return to this question. In thitsiseave solve a particular
problem of this kind.

A complete proof system faZspsc can also be constructed based on the ob-
servation thatZs psc is equally expressive a¥4r. The way to do it is as follows.
There is a complete proof system f&f, r that is also complete faZspscr if it
is extended with the appropriate reduction axioms. Thesdifice between the lan-
guageZapscr and Zapsc is that the latter does not contain relativised common
knowledge, but there is a reduction axiom for it (reducticiom 13). The idea is
that if we apply this reduction axiom to the proof system f6f pscr We obtain a
complete proof system fo#4 psc. In other words, we lefp := ][¢][BT]p play the
role of [( B; 7¢) |+ and thus adapt the proof system & pscr. Every occurrence
of [(B; 7)1 is replaced byp := 9][¢][B]p and the freshness pfis set as a side
condition. In this way the following proof system presei$gif.

DEFINITION 17. — The proof systemPAPSC consists of reduction axioms 1-4 and
6-9 from Definition 12 together with the rule of substitutimhequivalents and the
following axioms and rules.

1) all instantiations of propositional tautologies
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2) [a](e — ¢) = ([ede — [a]y)
3) [p:=ll¢l[B*lp < [Bl(v — (¥ Alp = ¥]l¢][B*]p))
wherep does not occur irp.
4) [p:= (¥ — [Bl(e — ¥)lel[Bp — ([Bl(v — ¥) — [p:= ¥][¢][B*]p)
wherep does not occur irp.
5) [¢llp == Y]XI[BTIp < [p := [¢]¥][e A [eIX][BF]p))
wherep does not occur ifp]w.
6) [ollp == @l[W][BFIp < [p = [o]¢]l[o]¥][BT]p))
wherep does not occur irfo].
7) [B*]p < [p:=¢][T][B*]p

8) Fromy andy — 1, infery
9) Fromy, infer [a]p

Axioms 3 and 4 look really difficult, but close examinatioveals that they are
direct translations of the mix axiom and the induction axi@mrelativised common
knowledgE respectively. Axioms 5, 6 and 7 are direct translations efréduction
axioms 5, 11 and 12 from Definition 1.2 respectively.

THEOREM 18 (COMPLETENESY. — Foreveryp € Zapsc if E ¢, then-apsc ¢.

PROOF — Suppose= ¢, wherep € Zapgc. This formula is also inZapscr-
Therefore, by Theorem 16, there is a proof of this formulahi@ proof system for
Zipscr using the proof system faf4 g with the appropriate reduction axioms.
With the proof system forZspsc one can simulate this proof by replacing every
expression of the forM(B; ?¢) ™|y with [p := ¢][][BT|p. So, indeed-ppsc ». M

6. Conclusion and further questions

In this paper dynamic epistemic logics with public annoumerts and public sub-
stitutions were studied. With these logics one can studgapacts and model other
kinds of public information change, including learninganhation about the past. The
focus of this paper is mainly on completeness and exprégsid reduction axioms.
The general method given in Section 3 can actually be apfdiether logics outside
the field of dynamic epistemic logic as well. The results ioti®m/5 suggest that the
method could also be extended to cases where one is preseittidtiree languages
2, L and %, where, C %5 and. % C %%, and there are reduction axioms to
reduce?; both to.%, and.%. If a complete proof system is available for oo, a
complete proof system fo#, can be obtained by applying the reduction axioms for

5. The mix axiom and induction axiom are the following:

[(B; 70) ' ]v > [Bl(0 — (¥ A [(B; 79) T ]¥))
[(B; 70)*](¥ — [Bl(v — 9)) — ([Bl(¢ — ¥) = [(B; 70) ]¥)

See also (Koogt al,, 2004).
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% to the proof system for#; extended with the reduction axioms that allowed the
reduction of.%; to %

The method of using reduction axioms seems related to worleirn rewriting
systems, as is also indicated by Balt@l. (1999). Reduction axioms can be seen as
rewrite rules, and, interpreted in these terms Lemnma 1@sthat the term rewriting
system terminates. In fact this follows from a general theofrom term rewriting
that states that a term rewriting system terminates iffelesists a so-called reduction
order. The order induced by th@ reduction depth is such a reduction order. See
Baader and Nipkow (1998, p.102-103) for a definition of reidumcorders and the
theorem. The connection between reduction axioms and tewriting should be
further explored.

As the results show, the logi#s psc is really more expressive tha#fs pc. Re-
markably, this is the only example where the language withlipisubstitutions is
more expressive than the language without public subistitsit In all other cases the
expressivity remained the same. It is still the case howesthe examples in Sec-
tion[2 show, that it is very convenient to have these opesaitothe language.

It would be interesting to study the relation between thec®gresented in this
paper and the notion of update as it is studied in the field bétevision (Katsuno
et al, 1992; Herziget al, 1999), where the term ‘update’ is given quite a different
meaning than in dynamic epistemic logic. One receives tfeerimation that a formula
 has become true, and one has to adapt one’s informationtgtabteommaodate this
information. In terms of the logics presented in this papehsan update can best be
conceived of as an announcement that some private sulmstihés occurred of which
the postconditionis . In dynamic epistemic logic, announced formulas are talsen a
preconditionsof the announcements.

If one were to generalise the notion of substitution to idelyprivate substitution
and further enrich the language, it seems that the statefment K’ x ¢ regarding
updategin the belief revision literature would correspondtd{o | [o]¢}][alv), i.e.
after you learn that the world has somehow changed suclptisatow true, you know
thaty. When it is assumed that this change is minimal, the corratipgriormulation
would be[u{o | [o]p}][a]y), i.e. after you learn that the smallest change has occurred
such thatp has become true, you know that

This perspective shows that there are different questioesway want to answer
when the world changes.

— Given some preconditions and an action, what are the puditgans?
— Given an action and some postconditions, what are the pdiamns?
— Given some preconditions and some postconditions, whiahaenable this?

Dynamic epistemic logic tries to answer the first questibeeéms that the approaches
to update in the belief revision literature try to answer ld&t question: a question

6. The expressiony € K * ¢ indicates that) is in the knowledge bas& after it has been
updated withp.
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at the centre of computer science. Given an algorithmiclpropone knows what
desired output is given the input, but not which algorithnpiements the transition.
The second question seems interesting from the point ofhditges. It is known

which program is running and what the results are, and on#olfacgure out what the
initial conditions were. A systematic integrated accodrtiithree questions certainly
seems worthwhile.

7. References
Austin J. L.,How to Do Things with Words, the William James Lectures Delivered at Harvar
University in 1955 Oxford University Press, London, 1962. edited by J.O. Urmson.

Baader F., Nipkow T.Term Rewriting and All ThatCambridge University Press, Cambridge,
1998.

Baltag A., “A logic for suspicious players: epistemic action and beliefatgslin gamesBul-
letin of Economic Researchiol. 54, num. 1, pp. 1-45, 2002.

Baltag A., Moss L. S., “Logics for epistemic programSynthesgvol. 139, pp. 165-224, 2004.

Baltag A., Moss L. S., Solecki S., The logic of public announcementanecon knowledge, and
private suspicions, Technical Report num. SEN-R9922, CWI, Ardate, 1999.

Blackburn P., de Rijke M., Venema Yodal Logic Cambridge University Press, Cambridge,
2001.

Fagin R., Halpern J. Y., Moses Y., Vardi M. YReasoning about Knowledgéhe MIT Press,
Cambridge, Massachusetts, 1995.

Freudenthal H., “Formulering van het ‘som-en-product’-proiige Nieuw Archief voor
Wiskundevol. 17, pp. 152, 1969.

Freudenthal H., “Oplossing van het ‘som-en-product’-probleerfieuw Archief voor
Wiskundevol. 18, pp. 102-106, 1970.

Gerbrandy J. D., Bisimulations on Planet Kripke, PhD thesis, Univeo§imsterdam, 1998.
ILLC Dissertation Series DS-1999-01.

Gerbrandy J., Groeneveld W., “Reasoning about information afadgurnal of Logic, Lan-
guage, and Informatigrvol. 6, pp. 147 —196, 1997.

Herzig A., Rifi O., “Propositional belief base update and minimal chingetificial Intelli-
gencevol. 115, num. 1, pp. 107-138, 1999.

Hintikka J., Knowledge and Belief, An Introduction to the Logic of the Two Noti@wwnell
University Press, Ithaca, New York, 1962.

Hughes G. E., Cresswell M. JA New Introduction to Modal LogjcRoutledge, London and
New York, 1996.

Katsuno H., Mendelzon A. O., “On the difference between updatingavladge base and
revising it”, in P. Gardenfors (ed.Relief RevisionCambridge University Press, Cambridge,
pp. 183-203, 1992.



Public update logics 253

Kooi B. P., Knowledge, Chance, and Change, PhD thesis, Univafsiyoningen, 2003. ILLC
Dissertation Series DS-2003-01.

Kooi B. P., van Benthem J. F. A. K., “Reduction axioms for epistemi®mas”, in R. Schmidt,
I. Pratt-Hartmann, M. Reynolds, H. Wansing (ed8jML-2004: Advances in Modal
Logic, Department of Computer Science, University of Manchester, Teghreport se-
ries, UMCS-04-9-1, pp. 197-211, 2004.

Kozen D., Parikh R., “An elementary proof of the completeness of PDheoretical Computer
Sciencevol. 14, pp. 113-118, 1981.

McCarthy J., “Formalization of two puzzles involving knowledged, V. Lifschitz (ed.),
Formalizing Common Sense : Papers by John McCarthlylex series in artificial in-
telligence, Ablex Publishing Corporation, Norwood, N. J., 1990. Avélainline at
http://wuw-formal.stanford.edu/jmc/.

Meyer J.-J. C., van der Hoek VEpistemic Logic for Al and Computer Scienc8ambridge
University Press, Cambridge, 1995.

Plaza J. A., “Logics of public communicationsii,M. L. Emrich, M. S. Pfeifer, M. Hadzikadic,
Z. W. Ras (eds)Proceedings of the 4th International Symposium on Methodologies for
Intelligent Systemsgpp. 201-216, 1989.

Renardel de Lavalette G. R., “Changing modalitidgiyrnal of Logic and Computatiorol. 14,
num. 2, pp. 251-275, 2004.

van Benthem J. F. A. K., “One is a lonely number’: on the logic of comination”, in
Z. Chatzidakis, P. Koepke, W. Pohlers (edspgic Colloquium '02 vol. 27 of Lecture
Notes in Logi¢ Association for Symbolic Logic, Poughkeepsie, 2006.

van Benthem J. F. A. K., van Eijck J., Kooi B. P., “Common knowledgepdate logics”jn
R. van der Meyden (ed.J;heoretical Aspects of Rationality And Knowledge: Proceedings
of the Tenth Conference (TARK 200p). 253-261, 2005.

van Benthem J. F. A. K., van Eijck J., Kooi B. P., “Logics of Commuatich and Change”,
2006. Accepted fomformation and Computation

van Ditmarsch H. P., Knowledge games, PhD thesis, University of igen, 2000. ILLC
Dissertation Series DS-2000-06.

van Ditmarsch H. P., Kooi B. P., “The secret of my success”, Aatepted for Synthese.

van Ditmarsch H. P., Ruan J., Verbrugge L. C., “Model checking &nd Product’in S. Zhang,
R. Jarvis (eds)Al 2005 vol. 3809 ofLecture Notes in Atrtificial IntelligenceSpringer-
Verlag, Berlin Heidelberg, pp. 790-795, 2005a.

van Ditmarsch H. P., van der Hoek W., Kooi B. P., “Concurrentalygit epistemic logic”jn
V. F. Hendricks, K. F. Jgrgensen, S. A. Pedersen (&is)wledge ContributorsKluwer
Academic Publishers, Dordrecht, pp. 45-82, 2003.

van Ditmarsch H. P., van der Hoek W., Kooi B. P., “Dynamic epistengidavith assignment”,
in F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh, M. Wooldridegs),Proceed-
ings of the Fourth International Joint Conference on Autonomous AgerdtsMulti-Agent
Systems (AAMAS 05)ol. 1, ACM Inc, New York, pp. 141-148, 2005bh.



254  JANCL - 17/2007. Belief revision and dynamic logic

van Eijck J., Guarded Actions, Technical Report num. SEN-E04%8l, Bmsterdam, Decem-
ber, 2004. Available fromattp://db.cwi.nl/rapporten/.

Yap A., Product update and looking backward, Technical Repam.rRP-2006-39, ILLC,
2006. available online athttp://www.illc.uva.nl/Publications/ResearchReports/PP-2006-
39.text.pdf!


http://db.cwi.nl/rapporten/
!

	Introduction
	Languages and semantics
	Reduction
	Depth and reduction axioms
	Equal expressivity via reduction
	Completeness via reduction

	Reducing public updates
	Expressivity of public updates
	Completeness for public updates

	A complete proof system for LAPSC
	Conclusion and further questions
	References

